+7 (499) 321-09-20
Москва, ул. Ленина 2 / 5, с 9.00 до 21.00
Разработка, изготовление и наладка
систем автоматики

Системы солнечной генерации. Фотоэлектричество

Солнце является первичным и основным источником энергии для нашей планеты. Именно благодаря ему на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа, которые в настоящее время человечеством активно потребляются. Следует так же учитывать, что энергия ветра формируется за счет перепадов температур, обусловленных тепловым воздействием Солнца на землю, поэтому Солнце так же является первоисточником ветрогенерации.

Солнце трудно "исчерпать" 

Каждую секунду солнце излучает 3,75х1026 Дж. На Землю попадает примерно 2 миллиардных доли этой энергии, из которых ~37% сразу отражается обратно в космос. Т.о. на Землю попадает лишь 6,3х1017 Дж (за год 7х1017 кВтч). Один Киловатт-час – это то количество энергии, которое требуется для работы одной лампочки накаливания мощностью 100 Вт в течение 10 часов. От всех источников энергии человечество потребляет приблизительно 2.5х1016 кДж/год. Таким образом, энергия получаемая Землей от Солнца за счет излучения, в 8000 раз больше чем необходимо человечеству для удовлетворения всех его потребностей.

Учёные подсчитали, что запасы различных углеводородов на 3емле составляют примерно 6 триллионов тонн. Если исходить из этой цифры, то содержащуюся в них энергию Солнце отдает нашей планете всего за три недели. При этом резервы его настолько велики, что в таком режиме оно сможет функционировать еще около 5 миллиардов лет. Подсчитано, что земные растения и морские водоросли утилизируют примерно 34% поступающей от Солнца энергии, остальная же практически полностью теряется.

Исходя из расчетов, если покрыть 0,7% земной поверхности солнечными батареями, КПД которых составляет 10% (а в среднем КПД современных батарей 15%-40%), то полученная энергия обеспечит потребности всего человечества более чем на 100%. Если бы человек сумел взять для удовлетворения своих потребностей хотя бы один процент поступающей от Солнца энергии, то это решило бы энергетические проблемы человечества на много веков вперёд.

Что влияет на количество выработанного электричества?

Географическое положение. Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше.

На экваторе больше, на полюсах меньше

Время года. Объём солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время его показатель минимален, в то время как летом достигает максимального значения.

Природные явления (осадки). Во время дождя или снега небо плотно затянуто тучами, и вследствие этого количество солнечной радиации, достигающей поверхности земли, уменьшается.

Тень от деревьев, домов. В тени количество солнечной радиации меньше, чем непосредственно на солнце. Это объясняется тем, что, попав на препятствие в виде дома или дерева, она рассеивается.

Тень от деревьев на солнечных панелях

КПД солнечной фотовольтаической панели. Он определяется путём деления мощности электрической энергии на мощность солнечного света, падающего на панель. На сегодняшний день среднее значение этого показателя на практике составляет 12-25%.

Таблица зависимости эффективности солнечной панели от материала ячейки
Технология кристалла Эффективность в лаборатории Практическая эффективность
Monocrystalline silicium (m-Si) 25% 13-17%
Polycrystalline silicium (p-Si) 20% 11-14%
Amorphous silicium (a-Si ) 13% 5-9%
Еще несколько слов об эффективности современных солнечных панелей. Приведем исследование 2015 года. Обратите внимание на последние цифры – результаты по КПД около 40%.

Приведена информация о повышении эффективности солнечных панелей с 1975 года

Правильная ориентация панели по углу наклона к горизонту и ориентации батареи по азимуту.

solarazimut

Схема солнечной установки. Основные элементы

Комплект системы солнечной электростанции состоит из следующих элементов:

1. Солнечные панели фотовольтаических ячеек: несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.

solarcell

2. Солнечный контроллер заряда: электронное устройство, предназначенное для контролирования и управления процессом зарядки и разрядки аккумуляторной батареи. В связи с тем, что в течение дня инсоляция единицы поверхности претерпевает существенные изменения, напряжение, выдаваемое фотовольтаической панелью так же меняется. Для стабильной зарядки АКБ требуется ограниченный диапазон зарядных напряжений. Задача солнечного контроллера – сглаживание неравномерностей, вызванных инсоляцией.

solarmppt

Солнечные контроллеры бывают трёх типов:

  • «On-Off» контроллеры, которые при достижении определенных уровней напряжения на клеммах аккумулятора либо подключают АКБ к зарядке от солнечной батареи, либо отключают. Из-за простоты логики работы устройства уровень зарядки аккумулятора достигает всего около 70%
  • ШИМ контроллеры, благодаря широтно-импульсной модуляции тока на завершающей стадии зарядки аккумулятора позволяют добиться заряда АКБ до 100%.
  • МРРТ контроллеры являются наиболее совершенными устройствами. Они преобразуют ток и напряжение, получаемое от солнечных панелей, до наиболее оптимальных значений для зарядки аккумулятора, благодаря чему эффективность использования солнечных батарей повышается на 30%.
    В современных системах применяются именно MPPT контроллеры. Поэтому им нужно уделить больше внимания.
    solarmpptdiag 
    На вольт-амперной характеристике солнечной батареи, видно, что точка максимальной мощности сдвигается на графике, в зависимости от напряжения, вырабатываемого фотовольтаическими элементами. MPPT контроллер в он-лайн режиме отслеживает ток и напряжение на батарее и определяет пару ток-напряжение, при которых мощность СБ будет максимальной. Так же контроллер отслеживает состояние банка АКБ, в частности, на какой стадии заряда находятся аккумуляторы (наполнение, насыщение, выравнивание, поддержка) и на основании совокупных данных определяет оптимальный зарядныйток. Алгоритм вычисления точки максимальной мощности может отличаться для контроллеров разных производителей, что в общем случае не имеет принципиального значения.

3. Банк АКБ: накопительная ёмкость от размера которой зависит продолжительность функционирования в автономном режиме объекта, который она питает.

4. Инвертор/зарядное устройство: устройство, преобразовывающее полученный от солнечных батарей постоянный ток в переменный.

Инверторы делятся на три основных типа:

  • Автономные (off grid) – не подключенные к внешней электрической сети и предназначенные для автономных систем электроснабжения;
  • Сетевые (on grid) – работающие синхронно с централизованной сетью электроснабжения, без центральной сети они работать не будут. Кроме своих прямых функций, они обеспечивают регулировку основных эксплуатационных параметров сети: частоту напряжения, амплитуду и т.д.
  • Гибридный (hybrid) – еще называемый «аккумуляторно-сетевым» преобразователь, совмещающий свойства автономных и сетевых устройств. Такой инвертор имеет большое количество настроек для оптимизации работы солнечной системы от общей электрической сети и при наличии аккумуляторных батарей. Гибридный инвертор чаще всего работает в режиме grid support, когда при работающей системе центрального снабжения, он использует максимально возможное количество энергии, получаемой от солнца, а при отключении общей сети, он может работать в полностью автономном режиме.

solarhowhybridinvertorworks

5. Пульт управления или связи. Он представляет собой многофункциональное устройство связи, обеспечивающее полный обзор эффективности систем управления электроэнергией с использованием интернета. Для многих систем пульт заменяется на коммутационный модуль с Ethernet интерфейсом. Это позволяет управлять системой с ПК, планшета или телефона – хорошее решение.

solarcombox

6. Следящая система – трекер. Это электромеханический прибор, цель которого — отслеживать перемещение источника света. Применяется для изменения положения фотоэлектрических модулей (солнечных батарей) с целью получения максимального КПД. Из-за высокой стоимости, в домашних системах применяется редко. Часто, вместо трекера используют механическое (ручное) смещение фотоэлементов в летний и зимний режим.

Вообще, основные части системы (инвертор, банк АКБ, контроллер заряда) будут аналогичными и для других систем электрогенерации с помощью ВИЭ – ветряной генерации и микро-гидрогенерации.

Солнечная установка для дома

Солнечная электростанция для дома необходима в следующих случаях:

  • Когда имеется ограничение по выделенной мощности у поставщика электроэнергии, например, ограничения в СНТ, в связи с ограниченной мощностью вводного трансформатора;
  • Когда дома удалены от трансформаторной подстанции настолько, что протянуть к ним кабель или провода окажется по стоимости несоизмеримо с приобретением автономного источника электроэнергии;
  • Когда надо обеспечить бесперебойное питание какой-нибудь системы, например, компьютерной сети или охранной сигнализации. В этом случае, необходимо уделить особое внимание емкости банка АКБ.

Несмотря на низкий пока еще КПД, солнечные батареи являются эффективным источником электроэнергии среди автономных и альтернативных источников питания. Одна батарея солнечных элементов площадью 10 квадратных метров способна дать больше 1 кВтч мощности, а это обеспечит нормальную работу нескольких лампочек, телевизора и компьютера.

solarxw

Для загородного дома, в котором проживают 3-4 человека, в весенне-летний период и в светлое время дня может оказаться достаточно 20 квадратных метров площади солнечных батарей (это примерная ежемесячная выдаваемая мощность — 200-300 кВтч, для Московской Области летом больше, зимой меньше).

Покупая устройства для преобразования солнечной энергии в электрическую, хозяин дома обретает частичную независимость от поставщика энергии и может в перспективе, расширяя систему получает столько электроэнергии, сколько ему может понадобиться в будущем.

Для обретения полной энергонезависимости, вероятно потребуется выбрать более мощную солнечную установку, по сравнению с большинством типовых предложений на рынке, еще один вариант – установить дополнительный дизель- или газовый генератор, который будет включаться если «все совсем плохо» - пасмурно несколько дней подряд или засыпало снегом. Но, возможно, это и не нужно?

Солнечная установка для предприятия

Солнечное электричество возможно использовать для обеспечения электроэнергией разного рода предприятий – вокзалы, торговые центры, парковки, дата-центры – перечень объектов можно продолжить на несколько страниц.

При создании солнечных установок для промышленных объектов, применяют сетевые (on grid) трехфазные инверторы, мощностью от 10 кВА и выше, в зависимости от требований. Данный тип инверторов работает исключительно при наличии напряжения в сети, синхронизация выходной мощности по напряжению и частоте основной сети электроснабжения.

В случае отключения основного электропитания, остановится и солнечная генерация. Поэтому нет возможности использования таких инверторов в качестве резервного источника питания.

Оборотная сторона этого обстоятельства – отсутствие необходимости в банке АКБ, который может стоить не менее 1/3 от стоимости всей системы. Косвенно, это ускоряет окупаемость проекта на 30-40%.

solartl

Основное преимущество установки солнечных панелей на предприятиях – это конечно же существенная экономия электроэнергии. Расчеты показывают, что при условии корректной установки и эксплуатации, для большинства случаев, любая промышленная установка вернет вложенные средства в течение 3-5 лет. Эта цифра получена для московского региона. За счет чего экономия?

  • Коммерческий объект потребляет большое количество электроэнергии, это означает, что практически все солнечное электричество будет использовано;
  • Часто, пик потребления коммерческого объекта совпадает с пиком солнечной генерации. Пример: лето, солнце в зените, магазин продуктов, максимальное потребление электроэнергии системами кондиционирования и холодильным оборудованием;
  • Стоимость киловатт часа для юридических лиц, до настоящего момента была всегда выше, чем для физических – это косвенный фактор, но он уменьшает срок окупаемости;
  • Возможность увеличения подключенной мощности, без согласования с энергосбытовой компанией.

Солнечные электростанции

Солнечная электростанция - инженерное сооружение, служащее для преобразования солнечной радиации в электрическую энергию.

Солнечные электростанции разделяются на два больших класса:

Солнечные электростанции, использующие для преобразования энергии фотовольтаические ячейки, объединенные в батареи солнечных элементов (панели). Это наиболее распространенный вид преобразования. Все что было написано выше – относится к данным электростанциям. Объем генерации станции зависит от количества установленных солнечных панелей.

Этот вид электростанций подойдет либо для сетевых генерирующих компаний, представители которых навряд ли будут читать данный материал, либо для отдельно стоящих населенных пунктов с хорошей годовой инсоляцией.

Большое количество людей, проживающих в отдаленных уголках нашей родины, отрезаны от основных генерирующих мощностей. Электричество вырабатывается с помощью дизель-генераторов, а это очень дорогое электричество. Установка солнечной электростанции – приносит немедленный экономический эффект.

Основной недостаток фотовольтаической генерации – невозможность работы в ночное время суток и необходимость установки либо дополнительного генератора, либо большого банка АКБ.

Второй большой класс – солнечные электростанции, использующие тепловую энергию. Идея метода – нагревание теплоносителя с помощь солнечного излучения и подача получаемого пара на лопатки турбины генератора. Электростанции этого класса могут быть башенного и модульного типа.

В башенных солнечных электростанциях (СЭС) используется центральный приемник (емкость с теплоносителем) окруженный сфокусированной на нем обширной системой зеркальных элементов. Для максимальной передачи тепла, каждый зеркальный элемент оснащен следящей за солнцем системой. «Солнечные зайчики» фокусируются на центральном приемнике и превращаю теплоноситель пар. Пар подается на лопатки генератора, а его избыток аккумулируется внутри дополнительного резервуара, этот избыток используется для генерации электроэнергии в ночное время суток. Главным недостатком башенных солнечных электростанций являются их высокая стоимость и большая занимаемая площадь, но если с площадь в избытке, то строительство такой СЭС экономически оправдано.

solarbigstation

Идея, лежащая в основе работы солнечных электростанций башенного типа, была высказана более 350 лет назад, однако первое строительство СЭС этого типа состоялось только в 1965г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

Одной из крупнейших башенных станций на сегодня является станция Ivanpah Solar Electric Generating System в Калифорнии. Она включает в себя три башни высотой с 40-этажные здания, а также 350 000 зеркал размером с дверь гаража. Зеркала отражают солнечный свет на котлы на вершинах башен, создавая пар, который заставляет работать генераторы. Пиковая мощность электростанции 392 мВт, она может снабжать электричеством 140 тысяч домохозяйств.

В модульных солнечных электростанциях используется большое число модулей, в каждом из которых имеется параболо-цилиндрический концентратор солнечного излучения и физически соединенный с электрогенератором приемник. Физический принцип аналогичен башенным СЭС, но технически, каждый модуль теперь является миниэлектростанцией, подключающейся к сети генерирующей компании.

solarmodul

Стоимость установки солнечной генерации. И когда это все окупится?

Объективно, имеется тенденция к постоянному уменьшению стоимость солнечных электростанций, это приводит к постоянному удешевлению выработанной ими электроэнергии и снижению сроков окупаемости подобных проектов. На сегодняшний день наблюдается постепенное уравнивание цен на «солнечные» киловатт-часы и киловатт-часы, полученные традиционным способом.

Анализ окупаемости учитывает такие факторы как: тип и целевое назначение солнечной электростанции, ее географическое место расположения, мощность, а также стоимость альтернативных решений, с которыми она будет сравниваться.

Стоимость существенно зависит от поставленных задач. Для дачного дома с летним проживанием и небольшими подключенным мощностями стоимость будет одна, для коттеджа с круглогодичным проживанием, стоимость увеличится пропорционально подключаемой мощности. Для коммерческого объекта стоимость подключенного киловатта часто ниже, т.к. во многих случаях отсутствует необходимость в батарее АКБ.

Срок окупаемости электростанции коммерческого объекта 3 - 5 лет, дачная система, при использовании только по выходным, окупаться будет значительно дольше (не менее 15 лет). Солнечная установка коттеджа с постоянным проживанием окупится за 7-10 лет.

Многое зависит от стоимости кВт*ч, по которому заказчик покупает электроэнергию у государства и региона установки.

Иногда компании-инсталляторы стремятся «продавать мечту», обещая практически мгновенную окупаемость солнечной установки в домохозяйстве. В каком-то проценте случаев – так и получится, но таких случаев по опыту – меньше 20%. Срок окупаемости в большей степени зависит не от цены установки, не от производителя и даже не от цены киловатт часа, а от того как именно вы потребляете электроэнергию. Если потребление небольшое, то окупаться она будет долго. Хорошая новость в том, что при малом потреблении можно существенно уменьшить первоначальные затраты.

Солнечная установка в небольшом домохозяйстве – в первую инструмент комфорта и независимости, во вторую – способ экономии.

Преимущества и недостатки

К преимуществам солнечных батарей следует отнести:

  • Общедоступность и неисчерпаемость источника энергии (солнца);
  • 100% экологическая безопасность;
  • Возможность длительного использования – срок эксплуатации составляет 25 и более лет;
  • Электричество от солнечных батарей поступает полностью автономно;
  • После установки – бесплатная энергия;
  • Для установки солнечных батарей не требуется никаких согласований.

Одновременно с этим они имеют и ряд недостатков:

  • высокие первоначальные затраты и недостаточный КПД.
  • Низкая эффективность в зимнее время, а также при пасмурной и туманной погоде.
  • Потребность в дополнительном оборудовании (аккумуляторах, инверторах и т. д.) и вспомогательных помещениях для его размещения.
  • Зависимость от времени года в определенных климатических поясах.
Новости
Все новости
Отзывы о нас

Руководство Филиала КОО «ЛОГРАР ЛИМИТЕД» выражает благодарность коллективу ООО... Подробнее »

КОО «ЛОГРАР ЛИМИТЕД»

Уважаемый Ринат Шакирзянович! ООО «ФИНПРОЕКТ» выражает благодарность компании ООО... Подробнее »

ООО «ФИНПРОЕКТ»
Все отзывы